A hot compact dust disk around a massive young stellar object
- Others:
- Department of Astronomy [Ann Arbor] ; University of Michigan [Ann Arbor] ; University of Michigan System-University of Michigan System
- Max-Planck-Institut für Radioastronomie (MPIFR)
- Laboratoire Hippolyte Fizeau (FIZEAU) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
- Laboratoire d'Astrophysique de Grenoble (LAOG) ; Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- I. Physikalisches Institut [Köln] ; Universität zu Köln = University of Cologne
- INAF - Osservatorio Astrofisico di Arcetri (OAA) ; Istituto Nazionale di Astrofisica (INAF)
Description
Circumstellar disks are an essential ingredient of the formation of low-mass stars. It is unclear, however, whether the accretion-disk paradigm can also account for the formation of stars more massive than about 10 solar masses, in which strong radiation pressure might halt mass infall. Massive stars may form by stellar merging, although more recent theoretical investigations suggest that the radiative-pressure limit may be overcome by considering more complex, nonspherical infall geometries. Clear observational evidence, such as the detection of compact dusty disks around massive young stellar objects, is needed to identify unambiguously the formation mode of the most massive stars. Here we report near-infrared interferometric observations that spatially resolve the astronomical unit-scale distribution of hot material around a high-mass (approx. 20 solar masses) young stellar object. The image shows an elongated structure with a size of about 13 x 19 astronomical units, consistent with a disk seen at an inclination angle of 45 degree. Using geometric and detailed physical models, we found a radial temperature gradient in the disk, with a dust-free region less than 9.5 astronomical units from the star, qualitatively and quantitatively similar to the disks observed in low-mass star formation. Perpendicular to the disk plane we observed a molecular outflow and two bow shocks, indicating that a bipolar outflow emanates from the inner regions of the system.
Abstract
13 pages, 2 figures, published in July 15 issue of Nature; Supplementary Information document available at http://www.nature.com/nature/journal/v466/n7304/extref/nature09174-s1.pdf
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-00511347
- URN
- urn:oai:HAL:hal-00511347v1
- Origin repository
- UNICA