Published 2008
| Version v1
Report
Exploring the segmentation space for the assessment of multiple change-point models
Creators
Contributors
Others:
- Modeling plant morphogenesis at different scales, from genes to phenotype (VIRTUAL PLANTS) ; Centre Inria d'Université Côte d'Azur (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de la Recherche Agronomique (INRA)-Amélioration génétique et adaptation des plantes méditerranéennes et tropicales (UMR AGAP) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d'études supérieures agronomiques de Montpellier (Montpellier SupAgro)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d'études supérieures agronomiques de Montpellier (Montpellier SupAgro)
- Développement et amélioration des plantes (UMR DAP) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Université Montpellier 2 - Sciences et Techniques (UM2)-Centre National de la Recherche Scientifique (CNRS)
- INRIA
Description
This paper addresses the retrospective or off-line multiple change-point detection problem. Methods for exploring the space of possible segmentations of a sequence for a fixed number of change points may be divided into two categories: (i) enumeration of segmentations, (ii) summary of the possible segmentations in change-point or segment profiles. Concerning the first category, a forward dynamic programming algorithm for computing the top L most probable segmentations and a forward-backward algorithm for sampling segmentations are derived. Concerning the second category, a forward-backward dynamic programming algorithm and a smoothing-type forward-backward algorithm for computing two types of change-point and segment profiles are derived. The proposed methods are mainly useful for exploring the space of possible segmentations for successive numbers of change points and provide a set of assessment tools for multiple change-point models. We show using examples that the proposed methods may help to compare alternative multiple change-point models (e.g. Gaussian model with piecewise constant variances or global variance), predict supplementary change points, highlight overestimation of the number of change points and summarize the uncertainty concerning the location of change points.
Abstract
Ce rapport est disponible dans : Rapports de Recherche. INRIAAdditional details
Identifiers
- URL
- https://inria.hal.science/inria-00311634
- URN
- urn:oai:HAL:inria-00311634v1
Origin repository
- Origin repository
- UNICA