Published 2021
| Version v1
Journal article
Fully automatic segmentation of diffuse large B cell lymphoma lesions on 3D FDG-PET/CT for total metabolic tumour volume prediction using a convolutional neural network
Contributors
Others:
- Service de médecine nucléaire [Créteil] ; Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Hôpital Henri Mondor-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)
- The Lymphoma Academic Research Organisation [Lyon] (LYSARC)
- Institut Mondor de Recherche Biomédicale (IMRB) ; Institut National de la Santé et de la Recherche Médicale (INSERM)-IFR10-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)
- E-Patient : Images, données & mOdèles pour la médeciNe numériquE (EPIONE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- Owkin France
- Service de Médecine Nucléaire [Toulouse] ; CHU Toulouse [Toulouse]
- Service de Médecine Nucléaire, Centre Georges-François Leclerc [Dijon] (CGFL) ; Centre Régional de Lutte contre le cancer Georges-François Leclerc [Dijon] (UNICANCER/CRLCC-CGFL) ; UNICANCER-UNICANCER
- Nuclear Oncology (CRCINA-ÉQUIPE 13) ; Centre de Recherche en Cancérologie et Immunologie Nantes-Angers (CRCINA) ; Université d'Angers (UA)-Université de Nantes (UN)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre hospitalier universitaire de Nantes (CHU Nantes)-Université d'Angers (UA)-Université de Nantes (UN)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre hospitalier universitaire de Nantes (CHU Nantes)
- Service de Médecine Nucléaire [Nancy] ; Centre Hospitalier Régional Universitaire de Nancy (CHRU Nancy)
- Centre hospitalier universitaire de Nantes (CHU Nantes)
- Service d'Hématologie Clinique (CHU de Dijon) ; Centre Hospitalier Universitaire de Dijon - Hôpital François Mitterrand (CHU Dijon)
Description
Purpose Lymphoma lesion detection and segmentation on whole-body FDG-PET/CT are a challenging task because of the diversity of involved nodes, organs or physiological uptakes. We sought to investigate the performances of a three-dimensional (3D) convolutional neural network (CNN) to automatically segment total metabolic tumour volume (TMTV) in large datasets of patients with diffuse large B cell lymphoma (DLBCL). Methods The dataset contained pre-therapy FDG-PET/CT from 733 DLBCL patients of 2 prospective LYmphoma Study Association (LYSA) trials. The first cohort (n = 639) was used for training using a 5-fold cross validation scheme. The second cohort (n = 94) was used for external validation of TMTV predictions. Ground truth masks were manually obtained after a 41% SUVmax adaptive thresholding of lymphoma lesions. A 3D U-net architecture with 2 input channels for PET and CT was trained on patches randomly sampled within PET/CTs with a summed cross entropy and Dice similarity coefficient (DSC) loss. Segmentation performance was assessed by the DSC and Jaccard coefficients. Finally, TMTV predictions were validated on the second independent cohort. Results Mean DSC and Jaccard coefficients (± standard deviation) in the validations set were 0.73 ± 0.20 and 0.68 ± 0.21, respectively. An underestimation of mean TMTV by − 12 mL (2.8%) ± 263 was found in the validation sets of the first cohort (P = 0.27). In the second cohort, an underestimation of mean TMTV by − 116 mL (20.8%) ± 425 was statistically significant (P = 0.01). Conclusion Our CNN is a promising tool for automatic detection and segmentation of lymphoma lesions, despite slight underestimation of TMTV. The fully automatic and open-source features of this CNN will allow to increase both dissemination in routine practice and reproducibility of TMTV assessment in lymphoma patients.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://www.hal.inserm.fr/inserm-03006852
- URN
- urn:oai:HAL:inserm-03006852v1
Origin repository
- Origin repository
- UNICA