Published October 2019
| Version v1
Journal article
Adaptive phase correction of diffusion-weighted images
Contributors
Others:
- Computational Imaging of the Central Nervous System (ATHENA) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- Philips Healthcare [Markham]
- Laboratoire de Traitement du signal [EPFL] / Signal Processing Laboratories (SP Lab) ; Ecole Polytechnique Fédérale de Lausanne (EPFL)
- Sherbrooke Connectivity Imaging Lab [Sherbrooke] (SCIL) ; Département d'informatique [Sherbrooke] (UdeS) ; Faculté des sciences [Sherbrooke] (UdeS) ; Université de Sherbrooke (UdeS)-Université de Sherbrooke (UdeS)-Faculté des sciences [Sherbrooke] (UdeS) ; Université de Sherbrooke (UdeS)-Université de Sherbrooke (UdeS)
Description
Phase correction (PC) is a preprocessing technique that exploits the phase of images acquired in Magnetic Resonance Imaging (MRI) to obtain real-valued images containing tissue contrast with additive Gaussian noise, as opposed to magnitude images which follow a non-Gaussian distribution, e.g. Rician. PC finds its natural application to diffusion-weighted images (DWIs) due to their inherent low signal-to-noise ratio and consequent non-Gaussianity that induces a signal overestimation bias that propagates to the calculated diffusion indices. PC effectiveness depends upon the quality of the phase estimation, which is often performed via a regularization procedure. We show that a suboptimal regularization can produce alterations of the true image contrast in the real-valued phase-corrected images. We propose adaptive phase correction (APC), a method where the phase is estimated by using MRI noise information to perform a complex-valued image regularization that accounts for the local variance of the noise. We show, on synthetic and acquired data, that APC leads to phase-corrected real-valued DWIs that present a reduced number of alterations and a reduced bias. The substantial absence of parameters for which human input is required favors a straightforward integration of APC in MRI processing pipelines.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.archives-ouvertes.fr/hal-02402015
- URN
- urn:oai:HAL:hal-02402015v1
Origin repository
- Origin repository
- UNICA