Traffic Grooming in Bidirectional WDM Ring Networks
- Creators
- Bermond, Jean-Claude
- Muñoz, Xavier
- Others:
- Algorithms, simulation, combinatorics and optimization for telecommunications (MASCOTTE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Applied Mathematics IV Department ; Universitat Politècnica de Catalunya [Barcelona] (UPC)
- INRIA
Description
We study the minimization of ADMs (Add-Drop Multiplexers) in optical WDM bidirectional rings considering symmetric shortest path routing and all-to-all unitary requests. We precisely formulate the problem in terms of graph decompositions, and state a general lower bound for all the values of the grooming factor $C$ and $N$, the size of the ring. We first study exhaustively the cases $C=1$, $C = 2$, and $C=3$, providing improved lower bounds, optimal constructions for several infinite families, as well as asymptotically optimal constructions and approximations. We then study the case $C>3$, focusing specifically on the case $C = k(k+1)/2$ for some $k \geq 1$. We give optimal decompositions for several congruence classes of $N$ using the existence of some combinatorial designs. We conclude with a comparison of the cost functions in unidirectional and bidirectional WDM rings.
Additional details
- URL
- https://hal.inria.fr/inria-00429155
- URN
- urn:oai:HAL:inria-00429155v1
- Origin repository
- UNICA