Canard solutions in planar piecewise linear systems with three zones
- Others:
- Multiscale dYnamiCs in neuroENdocrine AxEs (Mycenae) ; Inria Paris-Rocquencourt ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- Mathematical and Computational Neuroscience (NEUROMATHCOMP) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Departament de Ciències Matemàtiques et Informàtica ; Universitat de les Illes Balears (UIB)
Description
In this work, we analyze the existence and stability of canard solutions in a class of planar piecewise linear systems with three zones, using a singular perturbation theory approach. To this aim, we follow the analysis of the classical canard phenomenon in smooth planar slow–fast systems and adapt it to the piecewise-linear framework. We first prove the existence of an intersection between repelling and attracting slow manifolds, which defines a maximal canard, in a non-generic system of the class having a continuum of periodic orbits. Then, we perturb this situation and we prove the persistence of the maximal canard solution, as well as the existence of a family of canard limit cycles in this class of systems. Similarities and differences between the piecewise linear case and the smooth one are highlighted.
Abstract
International audience
Additional details
- URL
- https://hal.inria.fr/hal-01244978
- URN
- urn:oai:HAL:hal-01244978v1
- Origin repository
- UNICA