Tissue engineered in-vitro vascular patch fabrication using hybrid 3D printing and electrospinning
- Creators
- Mayoral González, Isabel
- Bevilacqua, Elisa
- Gómez, Gorka
- Hmadcha, Abdelkrim
- González-Loscertales, Ignacio
- Reina Romo, Esther
- Sotelo, Julio
- Domínguez, Antonia
- Pérez Alcántara, Pedro
- Smani, Younes
- González Puertas, Patricia Isabel
- Méndez, Ana
- Uribe, Sergio
- Smani Hajami, Tarik
- Ordóñez, Antonio
- Valverde Pérez, Israel
- Others:
- Universidad de Sevilla. Departamento de Ingeniería Mecánica y Fabricación
- Universidad de Sevilla. Departamento de Farmacología, Pediatría y Radiología
- Universidad de Sevilla. Departamento de Fisiología Médica y Biofísica
- Universidad de Sevilla. TEP111: Ingeniería mecánica
- Universidad de Sevilla. CTS200: Transplante corazón. Conservación corazón donante.
Description
Three-dimensional (3D) engineered cardiovascular tissues have shown great promise to replace damaged structures. Specifically, tissue engineering vascular grafts (TEVG) have the potential to replace biological and synthetic grafts. We aimed to design an in-vitro patient-specific patch based on a hybrid 3D print combined with vascular smooth muscle cells (VSMC) differentiation. Based on the medical images of a 2 months-old girl with aortic arch hypoplasia and using computational modelling, we evaluated the most hemodynamically efficient aortic patch surgical repair. Using the designed 3D patch geometry, the scaffold was printed using a hybrid fused deposition modelling (FDM) and electrospinning techniques. The scaffold was seeded with multipotent mesenchymal stem cells (MSC) for later maturation to derived VSMC (dVSMC). The graft showed adequate resistance to physiological aortic pressure (burst pressure 101 ± 15 mmHg) and a porosity gradient ranging from 80 to 10 μm allowing cells to infiltrate through the entire thickness of the patch. The bio-scaffolds showed good cell viability at days 4 and 12 and adequate functional vasoactive response to endothelin-1. In summary, we have shown that our method of generating patient-specific patch shows adequate hemodynamic profile, mechanical properties, dVSMC infiltration, viability and functionality. This innovative 3D biotechnology has the potential for broad application in regenerative medicine and potentially in heart disease prevention.
Abstract
Instituto de Salud Carlos III - FEDER - Fondo Social Europeo PI20/00467
Abstract
Instituto de Salud Carlos III PI17/01409, PT20/00069
Abstract
Fundación Menudos Corazones - Sociedad Española de Cardiología Pediátrica y Cardiopatías Congénitas (SECPCC) Beca 'Menudos Corazones 2020'
Abstract
Ministerio de Economía y Competitividad PID2019-104084GB-C22
Abstract
ANID – Millennium Science Initiative Program ICN2021_004, NCN17_129
Abstract
ANID FONDECYT #11200481, #1181057
Additional details
- URL
- https://idus.us.es/handle//11441/136473
- URN
- urn:oai:idus.us.es:11441/136473
- Origin repository
- USE