Published 2007
| Version v1
Report
Helly-type theorems for approximate covering
Contributors
Others:
- Effective Geometric Algorithms for Surfaces and Visibility (VEGAS) ; INRIA Lorraine ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)
- Geometric computing (GEOMETRICA) ; INRIA Futurs ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre Inria d'Université Côte d'Azur (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)
- INRIA
Description
Let F be a covering of a unit ball U in Rd by unit balls. We prove that for any epsilon >0, the smallest subset of F leaving at most a volume epsilon of U uncovered has size O(epsilon^((1-d)/2)polylog 1/epsilon). We give an example showing that this bound is tight in the worst-case, up to a logarithmic factor, and deduce an algorithm to compute such a small subset of F. We then extend these results in several directions, including covering boxes by boxes and visibility among disjoint unit balls in R3.
Additional details
Identifiers
- URL
- https://inria.hal.science/inria-00179277
- URN
- urn:oai:HAL:inria-00179277v3
Origin repository
- Origin repository
- UNICA