Diborane Reductions of CO2 and CS2 Mediated by Dicopper μ-Boryl Complexes of a Robust Bis(phosphino)-1,8-naphthyridine Ligand
Description
A dinucleating 1,8-naphthyridine ligand featuring fluorene-9,9-diyl-linked phosphino side arms (PNNPFlu) was synthesized and used to obtain the cationic dicopper complexes 2, [(PNNPFlu)Cu2(μ-Ph)][NTf2]; [NTf2] = bis(trifluoromethane)sulfonimide, 6, [(PNNPFlu)Cu2(μ-CCPh)][NTf2], and 3, [(PNNPFlu)Cu2(μ-OtBu)][NTf2]. Complex 3 reacted with diboranes to afford dicopper μ-boryl species (4, with μ-Bcat; cat = catecholate and 5, with μ-Bpin; pin = pinacolate) that are more reactive in C(sp)-H bond activations and toward activations of CO2 and CS2, compared to dicopper μ-boryl complexes supported by a 1,8-naphthyridine-based ligand with di(pyridyl) side arms. The solid-state structures and DFT analysis indicate that the higher reactivities of 4 and 5 relate to changes in the coordination sphere of copper, rather than to perturbations on the Cu-B bonding interactions. Addition of xylyl isocyanide (CNXyl) to 4 gave 7, [(PNNPFlu)Cu2(μ-Bcat)(CNXyl)][NTf2], demonstrating that the lower coordination number at copper is chemically significant. Reactions of 4 and 5 with CO2 yielded the corresponding dicopper borate complexes (8, [(PNNPFlu)Cu2(μ-OBcat)][NTf2]; 9, [(PNNPFlu)Cu2(μ-OBpin)][NTf2]), with 4 demonstrating catalytic reduction in the presence of excess diborane. Related reactions of 4 and 5 with CS2 provided insertion products 10, {[(PNNPFlu)Cu2]2[μ-S2C(Bcat)2]}[NTf2]2, and 11, [(PNNPFlu)Cu2(μ,κ2-S2CBpin)][NTf2], respectively. These products feature Cu-S-C-B linkages analogous to those of proposed CO2 insertion intermediate.
Abstract
US Department of Energy DE-AC02-05CH11231
Additional details
- URL
- https://idus.us.es/handle//11441/163786
- URN
- urn:oai:idus.us.es:11441/163786
- Origin repository
- USE