Published April 2020 | Version v1
Journal article

The Influence of Carbonate Platforms on the Geomorphological Development of a Mixed Carbonate‐Siliciclastic Margin (Great Barrier Reef, Australia)

Description

Sedimentation regimes on the Great Barrier Reef margin often do not conform to more conventional sequence stratigraphic models, presenting difficulties when attempting to identify key processes that control the margin's geomorphological evolution. By obstructing and modifying down‐shelf and down‐slope flows, carbonate platforms are thought to play a central role in altering the distribution and morphological presentation of common margin features. Using numerical simulations, we test the role of the carbonate platforms in reproducing several features (i.e., paleochannels, shelf‐confined fluvial sediment mounds, shelf‐edge deltas, canyons, and surface gravity flows) that have been described from observational data (seismic sections, multibeam bathymetry, sediment cores, and backscatter imagery). When carbonate platforms are present in model simulations, several notable geomorphological features appear, especially during lowstand. Upon exposure of the shelf, platforms reduce stream power, promoting mounding of fluvial sediments around platforms. On the outer shelf, rivers and streams are re‐routed and coalesce between platforms, depositing shelf‐edge deltas and incising paleochannels through knickpoint retreat. Additionally, steep platform topography triggers incision of slope canyons through turbidity currents, and platforms act as conduits for the localized delivery of land and shelf‐derived sediments to the continental slope and basin. When platforms are absent from the topographic surface, the model is unable to reproduce many of these features. Instead, a more typical "reciprocal‐type" sedimentation regime arises. Our results demonstrate the essential role of carbonate platform topography in modulating key bedload processes. Therefore, they exert direct control on the development of various geomorphological features within the shelf, slope, and basin environments.

Abstract

International audience

Additional details

Created:
December 4, 2022
Modified:
November 27, 2023