Published March 2012
| Version v1
Report
Adaptive Least-Squares One-Class Machines
- Creators
- Noumir, Zineb
- Honeine, Paul
- Richard, Cédric
- Others:
- Laboratoire Modélisation et Sûreté des Systèmes (LM2S) ; Institut Charles Delaunay (ICD) ; Université de Technologie de Troyes (UTT)-Centre National de la Recherche Scientifique (CNRS)-Université de Technologie de Troyes (UTT)-Centre National de la Recherche Scientifique (CNRS)
- Joseph Louis LAGRANGE (LAGRANGE) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
- Université de technologie de Troyes
Description
In this paper, we derive an adaptive one-class classification algorithm. We propose a least-squares formulation of the problem, where the model complexity is controlled by a parsimony criterion. We consider the linear approximation criterion, and we couple it with a simple adaptive updating algorithm for online learning. We conduct experiments on synthetic datasets and real time series, and illustrate the relevance of the proposed method over existing methods, and show its low computational cost.
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-01966121
- URN
- urn:oai:HAL:hal-01966121v1
- Origin repository
- UNICA