Compared performances of high-sensitivity cameras dedicated to myocardial perfusion tomoscintigraphy: a comprehensive analysis of phantom and human images
- Others:
- Centre Alexis Vautrin (CAV)
- Service de Médecine Nucléaire [Nancy] ; Centre Hospitalier Régional Universitaire de Nancy (CHRU Nancy)
- Centre de Recherche en Automatique de Nancy (CRAN) ; Université Henri Poincaré - Nancy 1 (UHP)-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)
- Département de Médecine Nucléaire [Nice] (CHU-Nice) ; Centre de Lutte contre le Cancer Antoine Lacassagne [Nice] (UNICANCER/CAL) ; UNICANCER-Université Côte d'Azur (UCA)-UNICANCER-Université Côte d'Azur (UCA)-Centre Hospitalier Universitaire de Nice (CHU Nice)
- Centre cardiolologique du nord ; Centre cardiologqiue du Nord, service de médecine nucleaire-Centre cardiologique du nord, service de médecine nucléaire
- Risque cardiovasculaire, rigidité-fibrose et hypercoagulabilité (RCV) ; Université Henri Poincaré - Nancy 1 (UHP)-Institut National de la Santé et de la Recherche Médicale (INSERM)
Description
Differences in the performance of cadmium-zinc-telluride (CZT) cameras or collimation systems that have recently been commercialized for myocardial SPECT remain unclear. In the present study, the performance of 3 of these systems was compared by a comprehensive analysis of phantom and human SPECT images. Methods: We evaluated the Discovery NM 530c and DSPECT CZT cameras, as well as the Symbia Anger camera equipped with an astigmatic (IQ⋅SPECT) or parallel-hole (conventional SPECT) collimator. Physical performance was compared on reconstructed SPECT images from a phantom and from comparable groups of healthy subjects. Results: Classifications were as follows, in order of performance. For count sensitivity on cardiac phantom images (counts⋅s−1⋅MBq−1), DSPECT had a sensitivity of 850; Discovery NM 530c, 460; IQ⋅SPECT, 390; and conventional SPECT, 130. This classification was similar to that of myocardial counts normalized to injected activities from human images (respective mean values, in counts⋅s−1⋅MBq−1: 11.4 ± 2.6, 5.6 ± 1.4, 2.7 ± 0.7, and 0.6 ± 0.1). For central spatial resolution: Discovery NM 530c was 6.7 mm; DSPECT, 8.6 mm; IQ⋅SPECT, 15.0 mm; and conventional SPECT, 15.3 mm, also in accordance with the analysis of the sharpness of myocardial contours on human images (in cm−1: 1.02 ± 0.17, 0.92 ± 0.11, 0.64 ± 0.12, and 0.65 ± 0.06, respectively). For contrast-to-noise ratio on the phantom: Discovery NM 530c had a ratio of 4.6; DSPECT, 4.1; IQ⋅SPECT, 3.9; and conventional SPECT, 3.5, similar to ratios documented on human images (5.2 ± 1.0, 4.5 ± 0.5, 3.9 ± 0.6, and 3.4 ± 0.3, respectively). Conclusion: The performance of CZT cameras is dramatically higher than that of Anger cameras, even for human SPECT images. However, CZT cameras differ in that spatial resolution and contrast-to-noise ratio are better with the Discovery NM 530c, whereas count sensitivity is markedly higher with the DSPECT.
Abstract
International audience
Additional details
- URL
- https://hal.science/hal-00733876
- URN
- urn:oai:HAL:hal-00733876v1
- Origin repository
- UNICA