Published 2013
| Version v1
Journal article
Injections de Sobolev probabilistes et applications
Creators
Contributors
Others:
- Laboratoire de Mathématiques d'Orsay (LM-Orsay) ; Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)
- Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- ANR-07-BLAN-0250,Equa-disp,Equations aux dérivées partielles dispersives(2007)
Description
In this article, we give probabilistic versions of Sobolev embeddings on any Riemannian manifold $(M,g)$. More precisely, we prove that for natural probability measures on $L^2(M)$, almost every function belong to all spaces $L^p(M)$, $p<+\infty$. We then give applications to the study of the growth of the $L^p$ norms of spherical harmonics on spheres $\mathbb{S}^d$: we prove (again for natural probability measures) that almost every Hilbert base of $L^2( \mathbb{S}^d)$ made of spherical harmonics has all its elements uniformly bounded in all $L^p(\mathbb{S}^d), p<+\infty$ spaces. We also prove similar results on tori $\mathbb{T}^d$. We give then an application to the study of the decay rate of damped wave equations in a frame-work where the geometric control property on Bardos-Lebeau-Rauch is not satisfied. Assuming that it is violated for a measure $0$ set of trajectories, we prove that there exists almost surely a rate. Finally, we conclude with an application to the study of the $H^1$-supercritical wave equation, for which we prove that for almost all initial data, the weak solutions are strong and unique, locally in time.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.archives-ouvertes.fr/hal-00646749
- URN
- urn:oai:HAL:hal-00646749v1
Origin repository
- Origin repository
- UNICA