Published September 2, 2019
| Version v1
Conference paper
Joint unmixing-deconvolution algorithms for hyperspectral images
Contributors
Others:
- Centre de Recherche en Automatique de Nancy (CRAN) ; Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
- Joseph Louis LAGRANGE (LAGRANGE) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
- FUI AAP 2015 Trispirabois
Description
This paper combines supervised linear unmixing and deconvolution problems to increase the resolution of the abundance maps for industrial imaging systems. The joint unmixing-deconvolution (JUD) algorithm is introduced based on the Tikhonov regularization criterion for offline processing. In order to meet the needs of industrial applications, the proposed JUD algorithm is then extended for online processing by using a block Tikhonov criterion. The performance of JUD is increased by adding a non-negativity constraint which is implemented in a fast way using the quadratic penalty method and fast Fourier transform. The proposed algorithm is then assessed using both simulated and real hyperspectral images.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.archives-ouvertes.fr/hal-02305958
- URN
- urn:oai:HAL:hal-02305958v1
Origin repository
- Origin repository
- UNICA