A PSO-driven spline-based shaping approach for ultra-wideband (UWB) antenna synthesis
- Others:
- Laboratoire d'Electronique, Antennes et Télécommunications (LEAT) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Department of Information Engineering and Computer Science (ELEDIA Research Group) ; University of Trento [Trento]
- Laboratoire des signaux et systèmes (L2S) ; Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)
Description
Synthesis of ultrawideband (UWB) antennas by means of a particle swarm optimizer (PSO)-driven spline-based shaping approach is described. In order to devise a reliable and effective solution, such a topic is analyzed according to different perspectives: 1) representation of the antenna shape with a simple and efficient description; 2) definition of a suitable description of the UWB Tx/Rx system; 3) formulation of the synthesis problem in terms of an optimization one; 4) integration of the modelling of the UWB system into a computationally efficient minimization procedure. As a result, an innovative synthesis technique based on the PSO-based iterative evolution of suitable shape descriptors is carefully detailed. To assess the effectiveness of the proposed method, a set of representative numerical simulations are performed and the results are compared with the measurements from experimental prototypes built according to the design specifications coming from the optimization procedure. To focus on the main advantages and features of the proposed approach, comparisons with the results obtained with a standard parametric approach are reported, as well
Abstract
International audience
Additional details
- URL
- https://hal.science/hal-01169183
- URN
- urn:oai:HAL:hal-01169183v1
- Origin repository
- UNICA