Visible Light-Driven H2 Production over Highly Dispersed Ruthenia on Rutile TiO2 Nanorods
Description
The immobilization of miniscule quantities of RuO2 (∼0.1%) onto one-dimensional (1D) TiO2 nanorods (NRs) allows H2 evolution from water under visible light irradiation. Rod-like rutile TiO2 structures, exposing preferentially (110) surfaces, are shown to be critical for the deposition of RuO2 to enable photocatalytic activity in the visible region. The superior performance is rationalized on the basis of fundamental experimental studies and theoretical calculations, demonstrating that RuO2(110) grown as 1D nanowires on rutile TiO2(110), which occurs only at extremely low loads of RuO2, leads to the formation of a heterointerface that efficiently adsorbs visible light. The surface defects, band gap narrowing, visible photoresponse, and favorable upward band bending at the heterointerface drastically facilitate the transfer and separation of photogenerated charge carriers.
Abstract
U.S. Department of Energy DE-SC0012704
Additional details
- URL
- https://idus.us.es/handle//11441/134163
- URN
- urn:oai:idus.us.es:11441/134163
- Origin repository
- USE