Published November 1, 2011
| Version v1
Conference paper
Data-Driven Trajectory Smoothing
Contributors
Others:
- Geometric computing (GEOMETRICA) ; Centre Inria d'Université Côte d'Azur (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre Inria de Saclay ; Institut National de Recherche en Informatique et en Automatique (Inria)
- Computer Science Department [Stanford] ; Stanford University
- Massachusetts Institute of Technology (MIT)
- European Project: 255827,EC:FP7:ICT,FP7-ICT-2009-C,CG LEARNING(2010)
Description
Motivated by the increasing availability of large collections of noisy GPS traces, we present a new data-driven framework for smoothing trajectory data. The framework, which can be viewed of as a generalization of the classical moving average technique, naturally leads to efficient algorithms for various smoothing objectives. We analyze an algorithm based on this framework and provide connections to previous smoothing techniques. We implement a variation of the algorithm to smooth an entire collection of trajectories and show that it perform well on both synthetic data and massive collections of GPS traces.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://inria.hal.science/inria-00636144
- URN
- urn:oai:HAL:inria-00636144v1
Origin repository
- Origin repository
- UNICA