Delaunay triangulation of a random sample of a good sample has linear size
- Creators
- Devillers, Olivier
- Glisse, Marc
- Others:
- Geometric Algorithms and Models Beyond the Linear and Euclidean realm (GAMBLE ) ; Inria Nancy - Grand Est ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Department of Algorithms, Computation, Image and Geometry (LORIA - ALGO) ; Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
- Understanding the Shape of Data (DATASHAPE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Inria Saclay - Ile de France ; Institut National de Recherche en Informatique et en Automatique (Inria)
- Inria Saclay Ile de France
- Inria Nancy - Grand Est
- European Project: 339025,EC:FP7:ERC,ERC-2013-ADG,GUDHI(2014)
Description
A good sample is a point set such that any ball of radius $\epsilon$ contains a constant number of points. The Delaunay triangulation of a good sample is proved to have linear size, unfortunately this is not enough to ensure a good time complexity of the randomized incremental construction of the Delaunay triangulation. In this paper we prove that a random Bernoulli sample of a good sample has a triangulation of linear size. This result allows to prove that the randomized incremental construction needs an expected linear size and an expected $O(n\log n)$ time.
Abstract (French)
Un bon échantillon est un ensemble de points tel que toute boule de rayon $\epsilon$ contienne un nombre constant de points.Il est démontré que la triangulation de Delaunay d'un bon échantillon a une taille linéaire, malheureusement cela ne suffit pas à assurerune bonne complexité à la construction incrémentale randomisée de latriangulation de Delaunay.Dans ce rapport, nous démontrons que la triangulation d'un échantillon aléatoire de Bernoullid'un bon échantillon a une taille linéaire. Nous en déduisonsque la construction incrémentale randomisée peut être faite en temps$O(n \log n)$ et espace $O(n)$.
Additional details
- URL
- https://hal.inria.fr/hal-01568030
- URN
- urn:oai:HAL:hal-01568030v1
- Origin repository
- UNICA