Published August 29, 2011 | Version v1
Conference paper

Real-time Dense Visual Tracking under Large Lighting Variations

Others:
Advanced Robotics and Autonomous Systems (AROBAS) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)
Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Centre National de la Recherche Scientifique (CNRS)
COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)
Visual servoing in robotics, computer vision, and augmented reality (Lagadic) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Inria Rennes – Bretagne Atlantique ; Institut National de Recherche en Informatique et en Automatique (Inria)-SIGNAUX ET IMAGES NUMÉRIQUES, ROBOTIQUE (IRISA-D5) ; Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA) ; Université de Rennes 1 (UR1) ; Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées - Rennes (INSA Rennes) ; Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-Télécom Bretagne-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes 1 (UR1) ; Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées - Rennes (INSA Rennes) ; Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-Télécom Bretagne-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA) ; Université de Rennes 1 (UR1) ; Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées - Rennes (INSA Rennes) ; Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-Télécom Bretagne-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes 1 (UR1) ; Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées - Rennes (INSA Rennes) ; Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Télécom Bretagne-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)

Description

This paper proposes a model for large illumination variations to improve direct 3D tracking techniques since they are highly prone to illumination changes. Within this context dense monocular and multi-camera tracking techniques are presented which each perform in real-time (45Hz). The proposed approach exploits the relative advantages of both model-based and visual odometry techniques for tracking. In the case of direct model-based tracking, photometric models are usually acquired under significantly greater lighting differences than those observed by the current camera view, however, model-based approaches avoid drift. Incremental visual odometry, on the other hand, has relatively less lighting variation but integrates drift. To solve this problem a hybrid approach is proposed to simultaneously minimise drift via a 3D model whilst using locally consistent illumination to correct large photometric differences. Direct 6 dof tracking is performed by an accurate method, which directly minimizes dense image measurements iteratively, using non-linear optimisation. A stereo technique for automatically acquiring the 3D photometric model has also been optimised for the purpose of this paper. Real experiments are shown on complex 3D scenes for a hand-held camera undergoing fast 3D movement and various illumination changes including daylight, artificial-lights, significant shadows, non-Lambertian reflections, occlusions and saturations.

Abstract

International audience

Additional details

Created:
December 4, 2022
Modified:
November 28, 2023