Published July 28, 2019
| Version v1
Conference paper
Noisy Supervision for Correcting Misaligned Cadaster Maps Without Perfect Ground Truth Data
Contributors
Others:
- COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)
- Geometric Modeling of 3D Environments (TITANE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- TAckling the Underspecified (TAU) ; Laboratoire de Recherche en Informatique (LRI) ; Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- ANR-17-CE23-0009,EPITOME,Représentation efficace pour des images satellites à grande échelle(2017)
Description
In machine learning the best performance on a certain task is achieved by fully supervised methods when perfect ground truth labels are available. However, labels are often noisy, especially in remote sensing where manually curated public datasets are rare. We study the multi-modal cadaster map alignment problem for which available annotations are mis-aligned polygons, resulting in noisy supervision. We subsequently set up a multiple-rounds training scheme which corrects the ground truth annotations at each round to better train the model at the next round. We show that it is possible to reduce the noise of the dataset by iteratively training a better alignment model to correct the annotation alignment.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.inria.fr/hal-02065211
- URN
- urn:oai:HAL:hal-02065211v1
Origin repository
- Origin repository
- UNICA