Published January 27, 2019
| Version v1
Conference paper
Human-in-the-Loop Feature Selection
Creators
Contributors
Others:
- École Nationale Supérieure de Techniques Avancées (ENSTA Paris)
- Web-Instrumented Man-Machine Interactions, Communities and Semantics (WIMMICS) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Scalable and Pervasive softwARe and Knowledge Systems (Laboratoire I3S - SPARKS) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Description
Feature selection is a crucial step in the conception of Ma-chine Learning models, which is often performed via data-driven approaches that overlook the possibility of tappinginto the human decision-making of the model's designers andusers. We present ahuman-in-the-loopframework that inter-acts with domain experts by collecting their feedback regard-ing the variables (of few samples) they evaluate as the mostrelevant for the task at hand. Such information can be mod-eled via Reinforcement Learning to derive a per-example fea-ture selection method that tries to minimize the model's lossfunction by focusing on the most pertinent variables from ahuman perspective. We report results on a proof-of-conceptimage classification dataset and on a real-world risk classi-fication task in which the model successfully incorporatedfeedback from experts to improve its accuracy.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.inria.fr/hal-01934916
- URN
- urn:oai:HAL:hal-01934916v1
Origin repository
- Origin repository
- UNICA