VLT/FLAMES high-resolution chemical abundances in Sculptor: a textbook dwarf spheroidal galaxy
- Others:
- Joseph Louis LAGRANGE (LAGRANGE) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
- Galaxies, Etoiles, Physique, Instrumentation (GEPI) ; Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris ; Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
- European Southern Observatory (ESO)
- Netherlands Institute of Ecology (NIOO-KNAW)
- Departament Llenguatges i Sistemes Informatics, ; Universitat Politècnica de Catalunya [Barcelona] (UPC)
Description
We present detailed chemical abundances for 99 red-giant branch stars in the centre of the Sculptor dwarf spheroidal galaxy, which have been obtained from high-resolution VLT/FLAMES spectroscopy. The abundances of Li, Na, α-elements (O, Mg, Si, Ca Ti), iron-peak elements (Sc, Cr, Fe, Co, Ni, Zn), and r- and s-process elements (Ba, La, Nd, Eu) were all derived using stellar atmosphere models and semi-automated analysis techniques. The iron abundances populate the whole metallicity distribution of the galaxy with the exception of the very low metallicity tail, −2.3 ≤ [Fe/H] ≤ −0.9. There is a marked decrease in [α/Fe] over our sample, from the Galactic halo plateau value at low [Fe/H] and then, after a "knee", a decrease to sub-solar [α/Fe] at high [Fe/H]. This is consistent with products of core-collapse supernovae dominating at early times, followed by the onset of supernovae type Ia as early as ∼12 Gyr ago. The s-process products from low-mass AGB stars also participate in the chemical evolution of Sculptor on a timescale comparable to that of supernovae type Ia. However, the r-process is consistent with having no time delay relative to core-collapse supernovae, at least at the later stages of the chemical evolution in Sculptor. Using the simple and well-behaved chemical evolution of Sculptor, we further derive empirical constraints on the relative importance of massive stars and supernovae type Ia to the nucleosynthesis of individual iron-peak and α-elements. The most important contribution of supernovae type Ia is to the iron-peak elements: Fe, Cr, and Mn. There is, however, also a modest but non-negligible contribution to both the heavier α-elements: S, Ca and Ti, and some of the iron-peak elements: Sc and Co. We see only a very small or no contribution to O, Mg, Ni, and Zn from supernovae type Ia in Sculptor. The observed chemical abundances in Sculptor show no evidence of a significantly different initial mass function, compared to that of the Milky Way. With the exception of neutron-capture elements at low [Fe/H], the scatter around mean trends in Sculptor for [Fe/H] > −2.3 is extremely low, and compatible with observational errors. Combined with the small scatter in the age-elemental abundances relation, this calls for an efficient mixing of metals in the gas in the centre of Sculptor since ∼12 Gyr ago.
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-02380434
- URN
- urn:oai:HAL:hal-02380434v1
- Origin repository
- UNICA