Published 2015
| Version v1
Journal article
A new class of fully nonlinear and weakly dispersive Green-Naghdi models for efficient 2D simulations
Creators
Contributors
Others:
- Département de Mathématiques et Applications - ENS-PSL (UMR8553) (DMA) ; École normale supérieure - Paris (ENS-PSL) ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
- Littoral, Environment: MOdels and Numerics (LEMON) ; Centre Inria d'Université Côte d'Azur (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut Montpelliérain Alexander Grothendieck (IMAG) ; Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Hydrosciences Montpellier (HSM) ; Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Institut de Mathématiques et de Modélisation de Montpellier (I3M) ; Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
- Programme INSU (LEFE MANU) SOLi
- ANR-13-BS01-0003,DYFICOLTI,DYnamique des Fluides, Couches Limites, Tourbillons et Interfaces(2013)
- ANR-13-BS01-0009,BoND,Frontières, numérique, dispersion.(2013)
Description
We introduce a new class of two-dimensional fully nonlinear and weakly dispersive Green-Naghdi equations over varying topography. These new Green-Naghdi systems share the same order of precision as the standard one but have a mathematical structure which makes them much more suitable for the numerical resolution, in particular in the demanding case of two dimensional surfaces. For these new models, we develop a high order, well balanced, and robust numerical code relying on an hybrid finite volume and finite difference splitting approach. The hyperbolic part of the equations is handled with a high-order finite volume scheme allowing for breaking waves and dry areas. The dispersive part is treated with a finite difference approach. Higher order accuracy in space and time is achieved through WENO reconstruction methods and through a SSP-RK time stepping. Particular effort is made to ensure positivity of the water depth. Numerical validations are then performed, involving one and two dimensional cases and showing the ability of the resulting numerical model to handle waves propagation and transformation, wetting and drying; some simple treatments of wave breaking are also included. The resulting numerical code is particularly efficient from a computational point of view and very robust; it can therefore be used to handle complex two dimensional configurations.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.science/hal-00932858
- URN
- urn:oai:HAL:hal-00932858v2
Origin repository
- Origin repository
- UNICA