Enumerating the edge-colourings and total colourings of a regular graph
- Creators
- Bessy, Stéphane
- Havet, Frédéric
- Others:
- Algorithmes, Graphes et Combinatoire (ALGCO) ; Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM) ; Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
- Algorithms, simulation, combinatorics and optimization for telecommunications (MASCOTTE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- INRIA
Description
In this paper, we are interested in computing the number of edge colourings and total colourings of a graph. We prove that the maximum number of $k$-edge-colourings of a $k$-regular graph on $n$ vertices is $k\cdot(k-1!)^{n/2}$. Our proof is constructible and leads to a branching algorithm enumerating all the $k$-edge-colourings of a $k$-regular graph using a time $O^*((k-1!)^{n/2})$ and polynomial space. In particular, we obtain a algorithm on time $O^*(2^{n/2})=O^*(1.4143^n)$ and polynomial space to enumerate all the $3$-edge colourings of a cubic graph, improving the running time of $O^*(1.5423^n)$ of the algorithm due to Golovach et al.~\cite{GKC10}. We also show that the number of $4$-total-colourings of a connected cubic graph is at most $3.2^{3n/2}$. Again, our proof yields a branching algorithm to enumerate all the $4$-total-colourings of a connected cubic graph.
Additional details
- URL
- https://hal.inria.fr/inria-00602188
- URN
- urn:oai:HAL:inria-00602188v1
- Origin repository
- UNICA