High levels of histones promote whole-genome-duplications and trigger a Swe1WEE1-dependent phosphorylation of Cdc28CDK1
Description
Whole-genome duplications (WGDs) have played a central role in the evolution of genomes and constitute an important source of genome instability in cancer. Here, we show in Saccharomyces cerevisiae that abnormal accumulations of histones are sufficient to induce WGDs. Our results link these WGDs to a reduced incorporation of the histone variant H2A.Z to chromatin. Moreover, we show that high levels of histones promote Swe1WEE1 stabilisation thereby triggering the phosphorylation and inhibition of Cdc28CDK1 through a mechanism different of the canonical DNA damage response. Our results link high levels of histones to a specific type of genome instability that is quite frequently observed in cancer and uncovers a new mechanism that might be able to respond to high levels of histones.
Abstract
European Research Council
Abstract
Spanish Ministry of Economy and Competitiveness
Abstract
Centro de Excelencia Severo Ochoa 2013–2017
Abstract
Spanish MiNECO
Abstract
Regional Andalusian Government
Abstract
European Union funds (FEDER)
Additional details
- URL
- https://idus.us.es/handle//11441/75135
- URN
- urn:oai:idus.us.es:11441/75135
- Origin repository
- USE