Published 2022 | Version v1
Journal article

Photonics-Based Near-Field Measurement and Far-Field Characterization for 300-GHz Band Antenna Testing

Contributors

Others:

Description

In this study, photonics-based near-field measurement and far-field characterization in a 300-GHz band are demonstrated using an electrooptic (EO) sensor with planar scanning. The field to be measured is up-converted to the optical domain (1550 nm) at the EO sensor and delivered to the measurement system with optical fiber. The typical phase drift of the system is 0.46° for the one-dimensional measurement time of 13 s, which is smaller than the standard deviation of the phase measurement of 1.2° for this time scale. The far-field patterns of a horn antenna calculated from the measured near-field distribution are compared with that measured with the direct far-field measurement system using a vector network analyzer. For the angular related parameters, the accuracy of the results obtained by our near-field measurement are comparable to that of those obtained by direct far-field measurements. The sidelobe level discrepancy (approximately 1 dB) between the results obtained based on our near-field measurement and those from the direct far-field measurements are attributed to the excess noise of the probe correction data. We believe that photonics-based near-field measurements with spherical EO probe scanning will pave the way for the characterization of high-gain antennas at the 300-GHz band.

Abstract

International audience

Additional details

Identifiers

URL
https://hal.archives-ouvertes.fr/hal-03694327
URN
urn:oai:HAL:hal-03694327v1