Symbolic Methods in Computational Cryptography Proofs
- Others:
- Institute IMDEA Software [Madrid]
- Max Planck Institute for Security and Privacy [Bochum] (MPI Security and Privacy)
- Mathematical, Reasoning and Software (MARELLE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- Sûreté du logiciel et Preuves Mathématiques Formalisées (STAMP) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- École normale supérieure - Cachan (ENS Cachan)
- Proof techniques for security protocols (PESTO) ; Inria Nancy - Grand Est ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Department of Formal Methods (LORIA - FM) ; Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
- Département d'informatique de l'École polytechnique (X-DEP-INFO) ; École polytechnique (X)
- ANR-17-CE39-0004,TECAP,Analyse de protocoles - unir les outils existants(2017)
- European Project: 645865,H2020 ERC,ERC-2014-CoG,SPOOC(2015)
Description
Code-based game-playing is a popular methodology for proving security of cryptographic constructions and side-channel countermeasures. This methodology relies on treating cryptographic proofs as an instance of relational program verification (between probabilistic programs), and decomposing the latter into a series of elementary relational program verification steps. In this paper, we develop principled methods for proving such elementary steps for probabilistic programs that operate over finite fields and related algebraic structures. We focus on three essential properties: program equivalence, information flow, and uniformity. We give characterizations of these properties based on deducibility and other notions from symbolic cryptography. We use (sometimes improve) tools from symbolic cryptography to obtain decision procedures or sound proof methods for program equivalence, information flow, and uniformity. Finally, we evaluate our approach using examples drawn from provable security and from side-channel analysis-for the latter, we focus on the masking countermeasure against differential power analysis. A partial implementation of our approach is integrated in EASYCRYPT, a proof assistant for provable security, and in MASKVERIF, a fully automated prover for masked implementations.
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-02404701
- URN
- urn:oai:HAL:hal-02404701v1
- Origin repository
- UNICA