Published 2016 | Version v1
Publication

Explicit expressions for eddy-diffusivity fields and effective large-scale advection in turbulent transport

Description

Large-scale transport is investigated in terms of new explicit expressions for eddy diffusivities and effective advection obtained from asymptotic perturbative methods. The carrier flow is formed by a large-scale component plus a small-scale contribution mimicking a turbulent flow. The scalar dynamics is observed in its pre-asymptotic regimes (i.e. on scales comparable to those of the large-scale velocity). The resulting eddy diffusivity is thus a tensor field which explicitly depends on the large-scale velocity. Small-scale interactions also cause the emergence of an effective large-scale (compressible) advection field which, as a result of the present study however, turns out to be of negligible importance. Two issues are addressed by means of Lagrangian simulations: quantifying the possible deterioration of the eddy-diffusivity/effective advection description by reducing to zero the spectral gap separating the large-scale velocity component from the small-scale component; comparing the accuracy of our closure against other simple, reasonable, options. Answering these questions is important in view of possible applications of our closure to tracer dispersion in environmental flows.

Additional details

Identifiers

URL
http://hdl.handle.net/11567/862786
URN
urn:oai:iris.unige.it:11567/862786

Origin repository

Origin repository
UNIGE