Published April 2017
| Version v1
Journal article
Multitask Diffusion Adaptation Over Networks With Common Latent Representations
Creators
Contributors
Others:
- Northwestern Polytechnical University [Xi'an] (NPU)
- Joseph Louis LAGRANGE (LAGRANGE) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
- Ecole Polytechnique Fédérale de Lausanne (EPFL)
Description
Online learning with streaming data in a distributed and collaborative manner can be useful in a wide range of applications. This topic has been receiving considerable attention in recent years with emphasis on both single-task and multitask scenarios. In single-task adaptation, agents cooperate to track an objective of common interest, while in multitask adaptation agents track multiple objectives simultaneously. Regularization is one useful technique to promote and exploit similarity among tasks in the latter scenario. This work examines an alternative way to model relations among tasks by assuming that they all share a common latent feature representation. As a result, a new multitask learning formulation is presented and algorithms are developed for its solution in a distributed online manner. We present a unified framework to analyze the mean-square-error performance of the adaptive strategies, and conduct simulations to illustrate the theoretical findings and potential applications.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.archives-ouvertes.fr/hal-03633892
- URN
- urn:oai:HAL:hal-03633892v1
Origin repository
- Origin repository
- UNICA