Published May 8, 2018
| Version v1
Conference paper
Language Modelling for the Clinical Semantic Verbal Fluency Task
Contributors
Others:
- Deutsches Forschungszentrum für Künstliche Intelligenz GmbH = German Research Center for Artificial Intelligence (DFKI)
- Cognition Behaviour Technology (CobTek) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre Hospitalier Universitaire de Nice (CHU Nice)-Institut Claude Pompidou [Nice] (ICP - Nice)-Université Côte d'Azur (UCA)
- Spatio-Temporal Activity Recognition Systems (STARS) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- Technicolor Imaging Science Lab ; Technicolor [Cesson Sévigné] ; Technicolor-Technicolor
Description
Semantic Verbal Fluency (SVF) tests are common neuropsychological tasks, in which patients are asked to name as many words belonging to a semantic category as they can in 60 seconds. These tests are sensitive to even early forms of dementia caused by e.g. Alzheimer's disease. Performance is usually measured as the total number of correct responses. Clinical research has shown that not only the raw count, but also production strategy is a relevant clinical marker. We employed language modelling (LM) as a natural technique to model production in this task. Comparing different LMs, we show that perplexity of a persons SVF production predicts dementia well (F1 = 0.83). Demented patients show significantly lower perplexity, thus are more predictable. Persons in advanced stages of de-mentia differ in predictability of word choice and production strategy-people in early stages only in predictability of production strategy.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.archives-ouvertes.fr/hal-01851411
- URN
- urn:oai:HAL:hal-01851411v1
Origin repository
- Origin repository
- UNICA