Published September 19, 2023
| Version v1
Conference paper
Complexity of Membership and Non-Emptiness Problems in Unbounded Memory Automata
- Others:
- Scalian Digital Systems
- Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Informatique, BioInformatique, Systèmes Complexes (IBISC) ; Université d'Évry-Val-d'Essonne (UEVE)-Université Paris-Saclay
Description
We study the complexity relationship between three models of unbounded memory automata: nu-automata (ν-A), Layered Memory Automata (LaMA)and History-Register Automata (HRA). These are all extensions of finite state automata with unbounded memory over infinite alphabets. We prove that the membership problem is NP-complete for all of them, while they fall into different classes for what concerns non-emptiness. The problem of non-emptiness is known to be Ackermann-complete for HRA, we prove that it is PSPACE-complete for ν-A.
Abstract
International audience
Additional details
- URL
- https://hal.science/hal-04199269
- URN
- urn:oai:HAL:hal-04199269v1
- Origin repository
- UNICA