Published June 13, 2013 | Version v1
Conference paper

A Lightweight Continuous Jobs Mechanism for MapReduce Frameworks

Others:
Parallel Cooperative Multi-criteria Optimization (DOLPHIN) ; Laboratoire d'Informatique Fondamentale de Lille (LIFL) ; Université de Lille, Sciences et Technologies-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lille, Sciences Humaines et Sociales-Centre National de la Recherche Scientifique (CNRS)-Université de Lille, Sciences et Technologies-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lille, Sciences Humaines et Sociales-Centre National de la Recherche Scientifique (CNRS)-Inria Lille - Nord Europe ; Institut National de Recherche en Informatique et en Automatique (Inria)
Active objects, semantics, Internet and security (OASIS) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Grid5000

Description

MapReduce is a programming model which allows the processing of vast amounts of data in parallel, on a large number of machines. It is particularly well suited to static or slow changing set of data since the execution time of a job is usually high. However, in practice data-centers collect data at fast rates which makes it very difficult to maintain up-to-date results. To address this challenge, we propose in this paper a generic mechanism for dealing with dynamic data in MapReduce frameworks. Long-standing MapReduce jobs, called continuous Jobs, are automatically re-executed to process new incoming data at a minimum cost. We present a simple and clean API which integrates nicely with the standard MapReduce model. Furthermore, we describe cHadoop, an implementation of our approach based on Hadoop which does not require modifications to the source code of the original framework. Thus, cHadoop can quickly be ported to any new version of Hadoop. We evaluate our proposal with two standard MapReduce applications (WordCount and WordCount-N-Count), and one real world application (RDF Query) on real datasets. Our evaluations on clusters ranging from 5 to 40 nodes demonstrate the benefit of our approach in terms of execution time and ease of use.

Abstract

International audience

Additional details

Created:
December 2, 2022
Modified:
November 27, 2023