Published August 29, 2016 | Version v1
Conference paper

Towards Lifelong Object Learning by Integrating Situated Robot Perception and Semantic Web Mining

Others:
School of Computer Science [Birmingham] ; University of Birmingham [Birmingham]
Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Web-Instrumented Man-Machine Interactions, Communities and Semantics (WIMMICS) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Scalable and Pervasive softwARe and Knowledge Systems (Laboratoire I3S - SPARKS) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)

Description

Autonomous robots that are to assist humans in their daily lives are required, among other things, to recognize and understand the meaning of task-related objects. However, given an open-ended set of tasks, the set of everyday objects that robots will encounter during their lifetime is not foreseeable. That is, robots have to learn and extend their knowledge about previously unknown objects on-the-job. Our approach automatically acquires parts of this knowledge (e.g., the class of an object and its typical location) in form of ranked hypotheses from the Semantic Web using contextual information extracted from observations and experiences made by robots. Thus, by integrating situated robot perception and Semantic Web mining, robots can continuously extend their object knowledge beyond perceptual models which allows them to reason about task-related objects , e.g., when searching for them, robots can infer the most likely object locations. An evaluation of the integrated system on long-term data from real office observations, demonstrates that generated hypotheses can effectively constrain the meaning of objects. Hence, we believe that the proposed system can be an essential component in a lifelong learning framework which acquires knowledge about objects from real world observations.

Abstract

International audience

Additional details

Created:
February 28, 2023
Modified:
November 29, 2023