La tesis doctoral está dividida en dos partes: En la primera (que consta de los cuatro primeros capítulos) se estudia la forma hipernormal. ... ht: 150%; font-family: 'Times New Roman','serif'; font-size: 12pt">En la segunda (formada por los dos últimos capítulos) se analiza el comportamiento dinámico y de bifurcaciones de un sistema...
-
November 27, 2014 (v1)PublicationUploaded on: December 4, 2022
-
October 17, 2022 (v1)Publication
In this paper, we analyze the problem of determining orbital hypernormal forms—that is, the simplest analytical expression that can be obtained for a given autonomous system around an isolated equilibrium point through time-reparametrizations and transformations in the state variables. We show that the computation of orbital hypernormal forms...
Uploaded on: March 24, 2023 -
April 26, 2017 (v1)Publication
The analysis of the Takens-Bogdanov bifurcation of the equilibrium at the origin in the Chua's equation with a cubic nonlinearity is carried out. The local analysis provides, in first approximation, different bifurcation sets, where the presence of several dynamical behaviours (including periodic, homoclinic and heteroclinic orbits) is...
Uploaded on: March 27, 2023 -
July 3, 2020 (v1)Publication
En el trabajo comentado, los autores presentan diez sistemas autónomos no lineales caóticos, de los que afirman que no tienen caos en el sentido de Shilnikov. Desgraciadamente, esta afirmación carece de fundamento pues utilizan un teorema erróneo de la literatura.
Uploaded on: March 27, 2023 -
January 8, 2024 (v1)Publication
The Lorenz system presents a double-zero bifurcation (a double-zero eigenvalue with geometric multiplicity two). However, its study by means of standard techniques is not possible because it occurs for a non-isolated equilibrium. To circumvent this difficulty, we add in the third equation a new term, Dz². In this Lorenz-like system, the...
Uploaded on: January 10, 2024 -
September 10, 2024 (v1)Publication
In this work, we analyze a degenerate heteroclinic cycle that appears in a Lorenz-like system when one of the involved equilibria changes from real saddle to saddle-focus. First, from a theoretical model based on the construction of a Poincaré return map, we demonstrate that an infinite number of homoclinic connections arise from the point of...
Uploaded on: September 11, 2024