A proper coloring of a graph is a partition of its vertex set into stable sets, where each part corresponds to a color. For a vertex-weighted graph, the weight of a color is the maximum weight of its vertices. The weight of a coloring is the sum of the weights of its colors. Guan and Zhu defined the weighted chromatic number of a...
-
March 2014 (v1)Conference paperUploaded on: October 11, 2023
-
March 2014 (v1)Conference paper
A proper coloring of a graph is a partition of its vertex set into stable sets, where each part corresponds to a color. For a vertex-weighted graph, the weight of a color is the maximum weight of its vertices. The weight of a coloring is the sum of the weights of its colors. Guan and Zhu defined the weighted chromatic number of a...
Uploaded on: December 3, 2022 -
2009 (v1)Report
A {\em good edge-labelling} of a graph $G$ is a labelling of its edges such that, for any ordered pair of vertices $(x,y)$, there do not exist two paths from $x$ to $y$ with increasing labels. This notion was introduced in~\cite{BCP} to solve wavelength assignment problems for specific categories of graphs. In this paper, we aim at...
Uploaded on: February 22, 2023 -
August 29, 2011 (v1)Conference paper
Given a graph $G = (V,E)$, the {\em closed interval} of a pair of vertices $u,v \in V$, denoted by $I[u,v]$, is the set of vertices that belongs to some shortest $(u,v)$-path. For a given $S\subseteq V$, let $I[S] = \bigcup_{u,v\in S} I[u,v]$. We say that $S\subseteq V$ is a {\em convex set} if $I[S] = S$. The {\em convex hull} $I_h[S]$ of a...
Uploaded on: December 3, 2022