Tokamak H-mode plasmas frequently exhibit edge-localized modes (ELMs). ELMs allow maintaining sufficient plasma purity and thus enable stationary H-mode. On the other hand in a future device ELMs may cause divertor power flux densities far in excess of tolerable material limits. The size of the energy loss per ELM is determined by saturation...
-
August 28, 2020 (v1)PublicationUploaded on: March 1, 2023
-
September 17, 2018 (v1)Publication
The upgrade of the edge charge exchange recombination spectroscopy diagnostic at ASDEX Upgrade has enabled highly spatially resolved me asurements of the impurity ion dynamics during an edge-localized mode cycle ( ELM ) with unprecedented temp oral resolution, i.e. 65 μ s. The increase of transport during an ELM induces a relaxation of the ion,...
Uploaded on: December 2, 2022 -
September 17, 2018 (v1)Publication
The ion heat transport in the pedestal of H-mode plasmas is investigated in various H-mode discharges with different pedestal ion collisionalities. Interpretive modelling suggests that in all analyzed discharges the ion heat diffusivity coefficient, χ i , in the pedestal is close to the neoclassical prediction within the experimental...
Uploaded on: March 1, 2023 -
September 17, 2018 (v1)Publication
The I-mode is a plasma regime obtained when the usual L-H power threshold is high, e.g. with unfavourable ion B ∇ direction. It is characterised by the development of a temperature pedestal while the density remains roughly as in the L-mode. This leads to a confinement improvement above the L-mode level which can sometimes reach H-mode...
Uploaded on: December 5, 2022