We analyze strong noise limit of some stochastic differential equations. We focus on the particular case of Belavkin equations, arising from quantum measurements, where Bauer and Bernard pointed out an intriguing behavior. As the noise grows larger, the solutions exhibits locally a collapsing, that is to say converge to jump processes, very...
-
January 10, 2019 (v1)PublicationUploaded on: December 4, 2022
-
2021 (v1)Journal article
In the strong noise regime, we study the homogeneization of quantum trajectories i.e. stochastic processes appearing in the context of quantum measurement. When the generator of the average semi-group can be separated into three distinct time scales, we start by describing a homogenized limiting semi-group. This result is of independent...
Uploaded on: December 4, 2022