β cells uniquely produce and secrete insulin under the control of several, integrated signals, to maintain blood glucose concentrations within a narrow physiological interval. β cell failure is key to the onset and progression of type 2 diabetes, due to impaired function and reduced mass. In this review we focus on several features of human β...
-
2020 (v1)PublicationUploaded on: March 27, 2023
-
2021 (v1)Publication
Arginase 2 (ARG2) is a manganese metalloenzyme involved in several tissue specific processes, from physiology to pathophysiology. It is variably expressed in extra-hepatic tissues and is located in the mitochondria. In human pancreatic beta cells, ARG2 is downregulated in type 2 diabetes. The enzyme regulates the synthesis of polyamines, that...
Uploaded on: November 9, 2024 -
2020 (v1)Publication
Pancreatic islet β-cell failure is key to the onset and progression of type 2 diabetes (T2D). The advent of single-cell RNA sequencing (scRNA-seq) has opened the possibility to determine transcriptional signatures specifically relevant for T2D at the β-cell level. Yet, applications of this technique have been underwhelming, as three independent...
Uploaded on: April 14, 2023 -
2022 (v1)Publication
A sensible control of hormone secretion from pancreatic islets requires concerted inter-cellular communications, but a comprehensive picture of the whole islet interactome is presently missing. Single-cell transcriptomics allows to overcome this and we used here a single-cell dataset from type 2 diabetic (T2D) and non-diabetic (ND) donors to...
Uploaded on: February 4, 2024 -
2021 (v1)Publication
The presence of islet cells double positive for insulin and glucagon (Ins+/Glu+) has been described in the pancreas from both type 2 (T2D) and type 1 (T1D) diabetic subjects. We studied the role of pro-inflammatory cytokines on the occurrence, trajectory, and characteristics of Ins+/Glu+ cells in human pancreatic islets. Pancreas samples,...
Uploaded on: March 27, 2023