The emergence of the energetic material known as thermite in the 1990s, composed of a metal and a metal oxide generally in the form of a particulate mixture, partly thanks to the development of micro and nanotechnologies, naturally motivated intensive research efforts in order to be able to predict their combustion behavior from numerical...
-
December 20, 2023 (v1)PublicationUploaded on: July 9, 2024
-
June 2021 (v1)Journal article
This article provides a computational analysis of the reaction of fully-dense layered aluminum and copper oxide systems. After the detailed presentation of the 2D nonstationary model implementing both oxygen and aluminum diffusion, the propagation of the reaction front in an Al/CuO thin film was studied. The model qualitatively reproduces the...
Uploaded on: December 4, 2022 -
2022 (v1)Journal article
Nanothermites are interesting energetic systems as their combustion driven by the oxidation of the metallic fuel associated with the reduction of the oxidizer, can produce extremely fast burning rates exceeding hundreds of m.s-1. In addition, by changing the reactant (composition, stoichiometry) geometry and compaction conditions, the control...
Uploaded on: February 22, 2023