This paper is devoted to study some predictions on injured cell-sheet based on reaction-diffusion equations. In the context of wound cell-sheet healing, we investigated the validity of the reaction-diffusion model of Fisher-KPP type for simulation of cell-sheet migration. In order to study the validity of this model, we performed experimental...
-
January 31, 2017 (v1)PublicationUploaded on: March 25, 2023
-
2017 (v1)Journal article
The popular 2D Fisher-KPP equation with constant parameters fails to predict activated or inhibited cell-sheet wound closure. Here, we consider the case where the collective diffusion coefficient is time dependent, with a 3-parameter sigmoid profile. The sigmoid is taken S-shaped for the activated assays, and Z-shaped for the inhibited ones....
Uploaded on: February 28, 2023 -
October 10, 2016 (v1)Conference paper
International audience
Uploaded on: February 28, 2023 -
2021 (v1)Journal article
In this paper, a finite difference scheme is presented for the initial-boundary value problem for the two-dimensional nonlinear Fisher–Kolmogorov–Petrovski–Piskunov (Fisher–KPP) equation with mixed boundary conditions. Using Energy functional, stability of the suggested scheme is achieved. Unique solvability of the difference solutions is...
Uploaded on: December 4, 2022 -
October 2015 (v1)Journal article
We consider a symmetric composite multilayered plate whose fiber orientation variesfrom a layer to another. The plate model used is that of Mindlin. We are interested indetermining the optimal fiber orientations that optimize, in the same time, two criteria:minimizing the compliance and maximizing the smallest eigenfrequency of vibration...
Uploaded on: February 28, 2023 -
May 7, 2014 (v1)Conference paper
International audience
Uploaded on: March 25, 2023