We have established a novel regulatory mechanism that restricts Rac1 activity through ubiquitylation and targeting to the proteasome of the active form of the GTPase for degradation and signal termination. This regulation is dominant over the classical GEF/GAP cycle of regulation. We identified the E3 ubiquitin ligase (E3L) HACE1 as the main...
-
November 8, 2016 (v1)PublicationUploaded on: December 4, 2022
-
March 20, 2017 (v1)Journal article
The E3 ubiquitin ligase HACE1 is a potent tumor suppressor that controls cell proliferation and ubiquitylates the small GTPase Rac1 to target it to proteasomal degradation. Whether and how the activity of HACE1 is regulated by the N-terminal ankyrin (ANK) and the middle (MID) domains is ill defined. Here, we identified in the version 64 of the...
Uploaded on: December 4, 2022 -
2017 (v1)Journal article
Transendothelial cell macroaperture (TEM) tunnels control endothelium barrier function and are triggered by several toxins from pathogenic bacteria that provoke vascular leakage. Cellular dewetting theory predicted that a line tension of uncharacterized origin works at TEM boundaries to limit their widening. Here, by conducting high-resolution...
Uploaded on: December 4, 2022 -
October 13, 2022 (v1)Journal article
Extracellular matrix (ECM) elasticity is perceived by cells via focal adhesion structures, which transduce mechanical cues into chemical signalling to conform cell behaviour. Although the contribution of ECM compliance to the control of cell migration or division has been extensively studied, little has been reported regarding infectious...
Uploaded on: December 4, 2022 -
September 10, 2014 (v1)Journal article
Dugesia japonica planarian flatworms are naturally exposed to various microbes but typically survive this challenge. We show that planarians eliminate bacteria pathogenic to Homo sapiens, Caenorhabditis elegans, and/or Drosophila melanogaster and thus represent a model to identify innate resistance mechanisms. Whole-transcriptome analysis...
Uploaded on: December 4, 2022