We define the \emph{curvilinear rank} of a degree $d$ form $P$ in $n+1$ variables as the minimum length of a curvilinear scheme, contained in the $d$-th Veronese embedding of $\mathbb{P}^n$, whose span contains the projective class of $P$. Then, we give a bound for rank of any homogenous polynomial, in dependance on its curvilinear rank.
-
October 30, 2012 (v1)PublicationUploaded on: December 3, 2022
-
2012 (v1)Journal article
We give a partial ''~quasi-stratification~'' of the secant varieties of the order $d$ Veronese variety $X_{m,d}$ of $\mathbb {P}^m$. It covers the set $\sigma _t(X_{m,d})^{\dagger}$ of all points lying on the linear span of curvilinear subschemes of $X_{m,d}$, but two ''~quasi-strata~'' may overlap. For low border rank two different...
Uploaded on: December 3, 2022 -
2011 (v1)Journal article
In this paper we study the $X$-rank of points with respect to smooth linearly normal curves $X\subset \PP n$ of genus $g$ and degree $n+g$. We prove that, for such a curve $X$, under certain circumstances, the $X$-rank of a general point of $X$-border rank equal to $s$ is less or equal than $n+1-s$. In the particular case of $g=2$ we give a...
Uploaded on: December 4, 2022 -
2012 (v1)Journal article
Let $X_{m,d}\subset \mathbb {P}^N$, $N:= \binom{m+d}{m}-1$, be the order $d$ Veronese embedding of $\mathbb {P}^m$. Let $\tau (X_{m,d})\subset \mathbb {P}^N$, be the tangent developable of $X_{m,d}$. For each integer $t \ge 2$ let $\tau (X_{m,d},t)\subseteq \mathbb {P}^N$, be the join of $\tau (X_{m,d})$ and $t-2$ copies of $X_{m,d}$. Here we...
Uploaded on: December 3, 2022 -
August 2, 2011 (v1)Publication
Let $F$ be a homogeneous polynomial of degree $d$ in $m+1$ variables defined over an algebraically closed field of characteristic 0 and suppose that $F$ belongs to the $s$-th secant variety of the $d$-uple Veronese embedding of $\mathbb{P}^m$ into $ \PP {{m+d\choose d}-1}$ but that its minimal decomposition as a sum of $d$-th powers of linear...
Uploaded on: December 4, 2022 -
May 2, 2012 (v1)Publication
We study the case of real homogeneous polynomial $P$ whose minimal real and complex decompositions in terms of powers of linear forms are different. In particularly we will show that, if the sum of the complex and the real ranks of $P$ is smaller or equal than $ 3\deg(P)-1$, then the difference of the two decompositions is completely determined...
Uploaded on: December 4, 2022 -
2011 (v1)Journal article
In this paper we improve the known bound for the $X$-rank $R_{X}(P)$ of an element $P\in {\mathbb{P}}^N$ in the case in which $X\subset {\mathbb P}^n$ is a projective variety obtained as a linear projection from a general $v$-dimensional subspace $V\subset {\mathbb P}^{n+v}$. Then, if $X\subset {\mathbb P}^n$ is a curve obtained from a...
Uploaded on: December 3, 2022 -
2012 (v1)Journal article
Let $F$ be a homogeneous polynomial of degree $d$ in $m+1$ variables defined over an algebraically closed field of characteristic 0 and suppose that $F$ belongs to the $s$-th secant variety of the $d$-uple Veronese embedding of $\mathbb{P}^m$ into $ \PP {{m+d\choose d}-1}$ but that its minimal decomposition as a sum of $d$-th powers of linear...
Uploaded on: December 3, 2022 -
August 28, 2012 (v1)Journal article
We describe the stratification by tensor rank of the points belonging to the tangent developable of any Segre variety. We give algorithms to compute the rank and a decomposition of a tensor belonging to the secant variety of lines of any Segre variety. We prove Comon's conjecture on the rank of symmetric tensors for those tensors belonging to...
Uploaded on: December 3, 2022 -
January 5, 2011 (v1)Publication
Let $C\subset \mathbb{P}^n$ be a rational normal curve and let $\ell_O:\mathbb{P}^{n+1}\dashrightarrow \mathbb{P}^n$ be any tangential projection form a point $O\in T_AC$ where $A\in C$. Hence $X:= \ell_O(C)\subset \mathbb{P}^n$ is a linearly normal cuspidal curve with degree $n+1$. For any $P = \ell_O(B)$, $B\in \mathbb{P}^{n+1}$, the $X$-rank...
Uploaded on: December 3, 2022 -
November 28, 2011 (v1)Publication
If $X\subset \mathbb{P}^n$ is a projective non degenerate variety, the $X$-rank of a point $P\in \mathbb{P}^n$ is defined to be the minimum integer $r$ such that $P$ belongs to the span of $r$ points of $X$. We describe the complete stratification of the fourth secant variety of any Veronese variety $X$ via the $X$-rank. This result has an...
Uploaded on: December 3, 2022 -
October 1, 2012 (v1)Journal article
In this paper we compute the dimension of all the higher secant varieties to the Segre-Veronese embedding of $\mathbb{P}^n\times \mathbb{P}^1$ via the section of the sheaf $\mathcal{O}(a,b)$ for any $n,a,b\in \mathbb{Z}^+$. We relate this result to the Grassmann Defectivity of Veronese varieties and we classify all the Grassmann...
Uploaded on: December 3, 2022 -
2013 (v1)Journal article
For any irreducible non-degenerate variety $X \subset \mathbb{P}^r$ , we relate the dimension of the $s$-th secant varieties of the Segre embedding of $\mathbb{P}^k\times X$ to the dimension of the $(k,s)$-Grassmann secant variety $GS_X(k,s)$ of $X$. We also give a criterion for the $s$-identifiability of $X$.
Uploaded on: December 3, 2022